
Semantix

Table of contents:
Automation

What is Automation?
Low code

Access to the responses of the steps action, code block and repeat
Trigger Event

Action (API REST, Database ou WebService SOAP)
Webhook

Action
Conditional
Repeat
Code Block
Stop
Trace
Dictionary

Get
Set

High code
High code - Creating a High Code

Creating a High Code
High code - Development
Trigger

Trigger Properties
Templates - Overview

Intro
Creating a New Template

Templates - Using a Template
Intro
Using the Template
Review Information
Components
Automation Name
Credentials
Triggers

About Packages
Package - Private Component

Creating a Private Component
New Component and Component Info
Authentication
Global Settings
Resources
Response
Code

Package REST

Package - REST
Creating a REST Component
Information
Authentication
Global Settings
Resources

Package - MongoDB
Creating a MongoDB Component

Package - SOAP
Creating a MongoDB Component
Information
Authentication
Resources

Package - SQL Database
Creating a SQL Database component
Information
Authentication
Resources

"General" tab
"Script" tab
"Response" tab
"Code" tab

About API Gateways
Intro

API Gateways - Global Settings
Intro
General
Global flow

Plugin - About
Plugin - Rate Limit

Intro
Creating a Rate Limit

Plugin - Schema Validator
Intro
Creating a Schema Validator

Plugin - IP Restriction
Intro
Creating an IP Restriction

Plugin - Cache
Intro
Creating a Cache

Monetization - API Gateways
Intro
Creating a Monetization
Details about your monetizations

API Gateways Resources

API Gateways - Resources
How to create a resource

"General" tab
"Request" tab
"Response" tab
"Flow" tab
"Test" tab

API Gateways - Documentation
Developer Portal - About

Intro
Developer Portal - Settings

Intro
Developer Portal - Permissions

Intro
Waiting for Approval
Approved Users

Developer Portal - Login
Intro
Request access
Request a password reset

Developer Portal - Documentation
Intro
Authentication
Endpoint

API Gateways - Granting API Access
API Gateways - Api Key Authentication
API Gateways - OAuth2 Authentication
API Gateways - Basic Authentication
API Gateways - None Authentication
Management - Client

Intro
Authentication
Credentials

Management - Tenant
Intro
Creating a Tenant

Management - Overview
Intro
Creating a credential

Management - OAuth2 Credentials
Intro
Obtaining the Access Token
Using Custom Names
Using Default Values

Management - Dictionary
Intro

Intro
Creating and editing a dictionary group
Visualizing and managing group keys

Management - Users
Intro
Creating an user

SDK - Parser
JSON
XML
CSV

SDK - Logger
Log

SDK - Component
SDK - Dictionary

Get
Set

SDK - MongoDB
SDK - MySQL
SDK - SQL Server
SDK - Oracle DB
SDK - Redshift
SDK - PostgreSQL
SDK - SOAP
SDK - Request

Simple HTTP call
SDK - Parallel
SDK - FTP

FTP
SDK - Third Party Libs

lodash
axios
decimal.js

IMPORTANT
CLI - Getting Started

About our CLI
Setup
How to get the latest version?

CLI - Projects
Create a project
Clone a project
Manage dependencies
Delete a project
Generate template files
Save changes
Discard changes
Publish changes

Publish changes
Sync Files
Declare Project as Webhook

CLI - Triggers
Create a trigger
Start a trigger
Delete a trigger

IP whitelists
Creating a ticket request inside LinkApi
Support tickets SLA

Automation
What is Automation?
A simple API integration that will run on scheduled Jobs.

Low code
Low code automations aim to build integrations through fewer code interactions and more screen configurations.

To build your automation, Low code has the following configurations:

Action

Run a call to a REST, SOAP, or DATABASE component.

Code Block

Perform some treatments with JS code in the flow

Conditional

Perform a condition in the flow

Repeat

Iterate through some flow data

Stop

Stop automation

Trace

Log some step of the flow

Dictionary

Store and retrieve values

Access to the responses of the steps action, code block and repeat
Example: Suppose you have an action that searches for an user by id, then you will use an action that you named
as userDetails. After this search you need a code to transform userDetails into a new property, then you add a
code block step and to get the data that came in userDetails in the code block function you will receive a data
that inside this object will have a property userDetails with the information from the previous action.

Trigger Event
This configuration has the objective of selecting a trigger to start the Automation.

To start an automation, a trigger is needed. This can be a search in an API, DATABASE or Webhook, it can also be
through a Webhook notification.

Action (API REST, Database ou WebService SOAP)

Firts select a component

Choose an action

Fill out the selected component credentials fields

Now you can set the general settings.

Result Path

All trigger action must return a list. However if the action response not return a list you can use the result path to
indicate the field that has the list.

Example: Suppose that in the resource response the list is inside the data property, so the result path becomes
data

Allow bulk data

Instead of rotating each item in the list in the steps you can choose to rotate the complete list.

And lastly you can pass some configurations to execute this resource.

Webhook
Select Webhook option.

First you need inform a payload that will be received at webhook request.

Now you can set the general settings.

Unique Keys

In case you want to assign a unique key to any payload key just select it as uniqueKey.

Allow bulk data

Instead of rotating each item in the list in the steps you can choose to rotate the complete list.

Action
This step is responsible for making calls to the REST, SOAP and DATABASE components packages built on the
LinkApi plataform.

First you must select a private or prebuilt component.

After choose a component you need select a resource.

Now you need to fill in the credential fields for the selected component

To save the answer to the action step, you need to give it a name.

To finish the configuration of the step action, it is necessary to inform the settings that will be used in the
consumption of the resource

Remember if you need to access the result of this step in the steps below, just use the variable 'data.stepName'

module.exports = async (data) => {

 const customersData = data.customers;

 return {
 headers: {},
 body: {
 customers: customersData
 },
 query: {},
 queryValues: {},

 queryString: {},
 urlParams: {}
 };
};

Conditional
To perform a condition in your automation flow, select the conditional step

First, select a source to make the condition. You can choose a previous step or primitive data like String, Number,
or Boolean.

After select a source you can fill a data field.

If the source selected were a previous step, you can pass the name the field name.

Example: You choose a previous step called customer and you want compare a firstName field inside on the
customer step. So the data field will be 'firstName'.

On two or more access levels in the object, pass the access path through '.', Continuing in the customer example,
let's assume that you need to compare the street field but this field is within address so the data field will be
equal to 'address.street'

After filled out data field, you must choose a Comparasion Operator

And finally, select another source to perform the comparison.

Repeat
If you want to iterate over some data from a previous step, you must use this configuration.

First, it is necessary to name the step. Remember that this name will have saved the value of each iterated item.

After, you must select a source to make the iteration. Remember, origins are earlier steps.

After select a source you can fill a input list.

Example: You choose a previous step called customers, If the list is at the root of customers it is not necessary to
pass the input list. But if the list is inside customer in the data parameter then put the date in the input list field

On two or more access levels in the object, pass the access path through '.', Continuing in the customers example,
Let's assume that your list is in the list property within the data property that is within customers then the input
list field 'data.list'

Code Block
This configuration is to perform some transformation or work on conversions.

Give the step a name, and then perform its function. Remember that what you return in this function you can take
in the steps ahead.

Stop
If you want stop the automation at some condition or debug the automation you must use this step.

Select a stop configuration.

After choose a status to stop

Trace
This configuration has the objective of presenting logs in the flow

First of a trace name

Then select the status of the trace

Select the source you would like to log in. If you want you can log the entire step, just do not put the data field,
but if you just want to log a certain field, just put the field name in the data field.

Dictionary
To use Dictionary actions in your automation flow, select the Dictionary step

Store and retrieve values in the key/value format for various purposes. Values are stored in groups according to
the tenant in the context. Groups are a way to organize your dictionary data as you desire, like a database entity.
Filling the Group field when using the dictionary step will only get/set values within the defined group.

First you need to select a name for this step, remember that this name will save the returned value of the step.

Then, define which dictionary group will you get/set values from and select the command between 'GET' and
'SET'. Here you can define an existing group or create a new one by typing its name.

Now after selecting which command to use, see more details about each of them below.

Get
Retrieve stored values using a unique key identifier, it can be a string retrieved from a previous step or manually
inputed. See the example below, we are getting a value from the "bling-intelipost" example group:

When selecting a string from another step you can optionally set the exact data field, leaving it blank will set the
direct output of the selected step.

Set
Store or update values on the defined group using a unique key indentifier and its value. Both fields can be
selected from the result of a previous step or a manually inputed string. See the example below, note that here
we are setting a new value on the same "bling-intelipost" example group, if the Group field was filled with a
group that still doesn't exist it would be created upon setting the value.

Select the "Allow update key" if you wish to overwrite existing dictionary data with the selected key.

High code
High code is an Advanced Code Automation. You should clone your project into your machine, you can use
LinkApi's SDK and CLI (Command Line Interface) to develop and manage this project.

Guess what? You can use your IDE or Text Editor favorite. Like the vscode or others.

https://docs.linkapi.solutions/docs/automations/automation-overview
https://docs.linkapi.solutions/docs/cli/cli-about

High code - Creating a High Code
Creating a High Code
To create a high code, follow the way: "Integration" > "Automation". Next clicks on "New automation", select
'High code' and filled the automation's name.

The next step is clone this automation in your machine. To do it, follow the instructions at platform.

High code - Development
After clone and open your high code into machine, you will have full power to develop it.

The project there are five folders, each one with its responsibility: automations, data-transformations, functions,
mocks, tests. Below, there are details:

automations

Here your can create your automations, but always keeping the pattern below:

data-transformations

Here your can create your data-transformations, it helps you do transformations of the data. For example, you
receive an object with the properties 'name' and 'lastname', but you need of the property with full name, then
you can create a data-transformation to resolve this.

Bellow there is an example:

functions

Here your can create functions to use in your projects.

Bellow there is an example:

class Automation {
 async run(ctx) {

 // Your beautiful code goes here

 }
}

module.exports = async (user) => {
 const { name, lastName } = user;

 return { fullName: `${name} ${lastName}` };
}

module.exports = (items) => {
 const itemsFiltered = items.filter(item => item.status === 'ready');

mocks

Here you can create a JSON file to 'mock' a response.

Bellow there is an example:

tests

Here you can create your tests to ensure quality in your project. The project is configured to use 'JEST' to help
you.

Bellow there is an example:

To run your test, you should run the command: npm test or yarn test .

Don't forget install your packages, your can run npm install or yarn install

 return itemsFiltered;
}

{
 "name": "John",
 "age": 31,
 "city": "New York"
}

const exampleAutomation = require('../automations/example-automation');

describe('Automation test', () => {

 it('should return status SUCCESS', async () => {
 const result = await exampleAutomation.run();
 expect(result).toEqual({ status: 'SUCCESS' });
 });

});

Trigger
Triggers are used to search or receive events and perform automations based on the retrieved data. In the LinkApi
portal it is allowed to create two types of triggers.

Polling

A poll trigger constantly executes automation based on time scheduled or time intervals.

Webhook

A webhook trigger is executed when a user fires a request for a generated URL when registering a webhook
trigger informing a body to execute the automation linked to that trigger

To execute this trigger just copy the webhook url generated.

An perform a request.

Trigger Properties
Tenant - Indicates which tenant this trigger will be for
Automation - Indicates that this trigger will be for that automation
Allow Notification - Allows notification through registered tags
Status - Indicates whether the trigger is active or not
Allow duplicated transaction - It is used when a single key-based transaction is allowed to happen if
successful more than once

Templates - Overview
Intro
A template is a way to create new automations, using another automation as a base. The process will create a
new automation with the same settings as the base automation, adapting the dependencies of the automation to
a new environment.

Creating a New Template
To setup a new template, you must have an automation properly configurated. After that, you need to access the
"Templates" section on the "Integrations" menu and click on "New Template" on the upper right corner of the
screen.

This will open a window where you can fill in the information needed for your template to work.

Name

This will be the name of your template. Set up a descriptive name, as this will be the main introduction to your
template

Description

This is the description of your template. When someone tries to use your template, they will be able to see this
description to better understand what your template is trying to accomplish.

Automation

This field is where you should select the automation used as a base for your template.

Privacy

The privacy of your template can be public or private. A private template will only be available in your account,
and a public one will be available to everyone.

Category

This field is based on categorizing your template to make it easier for people to find it. You can search templates
by these categories so setting up the right category will make it easier for others to find what they need.

Stage

The stage is used to define a template's status. A template with the "Stable" or "Beta" stage will be available to
everyone, but a template with the "Under Construction" stage is only available internally on LinkApi.

Templates - Using a Template
Intro
After creating a template, you can use it multiple times to create a new automation based on the one you
selected as the base for that template. The procedure to use the template is divided by steps, which we will cover
below.

Using the Template
To begin the process of using a template, you must click on the "Try Now" button on the template card.

Review Information
After selecting your template and clicking on the button, you will be shown the basic information of the template,
such as the name, the description and the automation flow. Notice that the automation flow will not be shown if
you're using an High Code Automation.

Components
If you have any private components being used in your base automation, you will need to clone those
components into your subscriber to ensure that your new automation has all the dependencies necessaries in it's
environment. Notice that you will only be able to setup clones for private components, as the public components
are always available to your automation. Simply define a display name and an internal name and press "Next" and
the components will be cloned.

Automation Name
After dealing with the private components, you'll need to set up a name for your new automation. Be aware that
clicking on "Next" here will create your new automation automatically.

Credentials
Now that you created your new automation, there are a few optional steps to customize your experience with it.
The first one is the Credentials step, where you can create credentials for each component in the automation.
Simply fill the fields and press "Next". If you wish to skip it, just click in the "Skip" button.

Triggers
If you are using a Low Code Automation as base for your template, you will be shown one last optional step to
create a trigger for your new automation. If you wish to do so, fill the fields and hit next. If you don't want to do it
now, you can simply click on "Skip" and end the process.

About Packages
The Packages is where you have an overview of abstractions of APIs and databases that can be used to build your
projects. Within the Packages, you can find Pre-Built Components, Private Components and Functions.

All files inside Packages can be easily implemented inside your projects as a Dependency . You can select a Pre-
Built Component, or clone to edit them, simply hovering over them, adding new Resources and your business
rules. This will turn it into a Private Component.

If none of the Pre-Built Components fits you, you can also create a Private Component to connect with any
endpoint online. Check how to create in section "Creating a Private Component".

You can easily start a Project in the Packages list, selecting Components and Functions as a Dependency.

Package - Private Component
Creating a Private Component
Build your own endpoints rapidly the way you need

Components are “encapsulated” REST APIs, databases, Web Services and what else you need to connect when
integrating or exposing APIs.

So, how should you create and set a new Component on LinkApi?

New Component and Component Info
Click on "New component" in header on the right side and start filling the information fields, then click in "create"
button.

Then you’ll see the first fields that should be filled.

The internal name’s purpose is to label this Component when you use it in your project with an individual ID. As
each API has its own peculiarities, we highly recommend consulting the documentation of the Component you’re
building for information like the base URL, authentication, resource names and others.

Component
internal
name

How your Component will be named inside the Catalog directory. Cannot contain spaces
or special characters.

Name The official name of your Component.

Logo Paste an image URL that represents your Component.

Component
description

Describe your Component in a few worlds. This is how the world will see your Component, so
make it comprehensible.

Component
internal
name

How your Component will be named inside the Catalog directory. Cannot contain spaces
or special characters.

Base URL

Your Component's base URL that will be reflected in each Resource. You can explicit the
version of your Component at the end, for example: https://www.base-url.com/v1. This field
also accepts custom authentication params inside the URL using braces, like that:
https://www.base-url.{myECommerce}.com/v1

Authentication
The second configuration tab is about Authentication types. So, whether it is a querystring, a header, a basic or a
custom one, this is where you set them. Again, these are information that are found in the API's documentation.
You can customize or add fields using the buttons on the upper right side, if necessary.

Authentication
Type

Description

NO AUTH Use it when your Component doesn't need an authentication login.

BASIC Basic authentication only requires Username and Password fields.

HEADER Authentication params that need to be sent via header.

QUERYSTRING Authentication params that need to be sent via querystring.

OAUTH2
Authentication model that allows the user to give access to their data without exposing
their password. For example: Facebook login. More info about OAUTH2 Components.

CUSTOM

Create any fields your Component requires and customize its code. This authentication
type will allow you to access the Auth code tab, where you can customize your
authentication even more. Clicking "Customize" on any Auth type will activate the Custom
authentication.

Global Settings

https://www.base-url.com/v1
https://www.base-url.%7Bmyecommerce%7D.com/v1

The next step is defining what are going to be the default parameters in your Component. This step is optional.
These are the permanent information within your requests, for instance, some querystring pattern or content
type. The API's documentation will provide those.

The Default Params will be set to every Resource you build, so you don't need to register it in every Resource. Just
set a default parameter and it will be replicated. You can choose between Querystring or Headers params.

By default, the results are returned in JSON format, however, if you need to receive them in XML, you can set this
by adding a header type, choose Accept as the name and component/xml as a value, as shown below:

Resources
The final step is when you will define which Resources you are going to use. The LinkApi platform gives you the
possible methods for each one of them (get, patch, delete, etc.) to reduce complexities. In order to execute the
request, you have to set the credentials (in some cases, the API Key and the Component Key).

Response
A component maybe has a Response block , this section is responsible to help you understand response of the
component or a resource.

You should write a json to represents the response and you can transform the json in visual fields.

Code
In "Code", you may view the code the behavior of the resource or component, edit and test it. You can for
example, use the our powerful SDK to convert data or anything else.

In "Request" block you can data to the function, like queryValues to the variables.

https://docs.linkapi.solutions/docs/nodejs-sdk-parser

Package - REST
Creating a REST Component
How can you create REST component on LinkApi’s platform? Here, we will detail the step by step to a new REST
component.

Click on "New component" in header on the right side and start filling the information fields. In this step, is that
you should select REST on the type field and fill in the other fields, like name, description, api host, etc. Once
that’s done, you can move on to the next step

Information
The Information tab is about initial configurations. You may complete informations, like an image to component's
logo or change any information.

Authentication
For Authentication help, access the Authentication article.

Global Settings
For Global Settings help, access the Global Settings article.

Resources
The Resources tab you should specify the URI name and select the action type, like GET , POST , PUT , DELETE

or PATCH .

If you click in a resource, you may fill others configurations to your resource created:

"General" tab

In "General" tab, there are the setup general options for this resource.

"Request" tab

You can setup possible request entries for this resource. Set querystring and url params , for example.

"Response" tab

In "Response" tab, you can setup possible responses for this resource. More informations, here

"Code" tab

In "Code", you may view the code the behavior of the resource, edit and test it. More informations, here

When you're done, hit Create and your Component will be ready to use.

https://docs.linkapi.solutions/docs/automations/package-private-component
https://docs.linkapi.solutions/docs/automations/package-private-component

Package - MongoDB
Creating a MongoDB Component
How can you create Database component on LinkApi’s platform? Here, we will detail the step by step to a new
MongoDB component.

Click on "New component" in header on the right side and start filling the information fields. In this step, the only
difference from creating different types of components, is that you should select “Database” on the type field,
and MongoDB in the database type. Once that’s done, you can move on to the next step.

The Information tab is about initial configurations. You may complete informations, like an image to component's
logo or change any information.

The Authentication tab is about MongoDB authentication. MongoDB comes by default with “uri” authentication,
so for this example, there is nothing to be altered.

The Resources tab you specify which collections (In MongoDB’s case) you need to consume and its actions,
like find , insertMany , agregate and others.

If you click in a resource, you may fill others configurations to your resource created. In "General" tab, there are
the setup general options for this resource. In "Schema", you may create a schema. In "Code", you may view the
code the behavior of the resource, edit and test it.

In the same way when creating a REST component, the database Components also allow you to handle the Code,
so you can specify some parameters, filters, or other changes that is convenient for what you need on your
received payloads.

Package - SOAP
Creating a MongoDB Component
SOAP (Simple Object Access Protocol) is a messaging protocol specification for Web Services.

Inside LinkApi, you can easily create SOAP Components. When creating a Component, simply change its type to
SOAP. Some changes will occur.

Click on "New component" in header on the right side and start filling the information fields. In this step, the only
difference from creating different types of components, is that you should select "SOAP" on the type field. Once
that’s done, you can move on to the next step.

Information
The "Information" tab is about initial configurations. You may complete informations, like an image to
component's logo or change any information.

Authentication
For Authentication help, access the Authentication article.

Resources
In the Resources tab, the Alias represents the action you'll consume in the web service. You can create a new
resource and should configure them clicking it.

"General" tab

In General tab: the Path will request the URL Action, and others informations, like title and description.

"Request" tab

You can setup possible request entries for this resource. Set querystring and url params , for example.

https://docs.linkapi.solutions/docs/automations/package-private-component#authentication

"Response" tab

In "Response" tab, you can setup possible responses for this resource. More informations, here

"Code" tab

In Code tab there are the code responsible to the action, you can change and test it.

You may read more, here.

When you're done, hit Create and your Component will be ready to use.

https://docs.linkapi.solutions/docs/automations/package-private-component
https://docs.linkapi.solutions/docs/automations/package-private-component#code

Package - SQL Database
Creating a SQL Database component
How can you create Database component on LinkApi’s platform? Here, we will detail the step by step to a new
SQL Database component.

You can create those options: MySQL, PostgreSQL, Oracle, SQL Server, Redshift.

Click on "New component" in header on the right side and start filling the information fields. In this step, the only
difference from creating different types of components, is that you should select “Database” on the type field,
and MySQL in the database type. Once that’s done, you can move on to the next step.

Information
The Information tab is about initial configurations. You may complete informations, like an image to component's
logo or change any information.

Authentication
You should configure the authentication like your database require.

For Authentication help, access the Authentication article.

Resources
The Resources tab you can create your queries, named them by alias and group them by something and settings.

You can create a resource clicking on green button with 'plus' icon.

If you click in a resource, you may fill others configurations to your resource created. Like informations in
"General" tab, write the SQL in "Script" tab, write its response in "Response" tab and handler the code behavior
of the resource in "Code" tab. Bellow this section, there are more details about each one.

https://docs.linkapi.solutions/docs/automations/package-private-component#authentication

"General" tab
In "General" tab, there are the setup general options for this resource, like alias, title and description.

"Script" tab
In "Script" tab, you should write the SQL of the resource. If you need variables in your SQL, you should create its
with "@" and you can convert the variables to visual fields clicking on the button.

"Response" tab
There are all information about "Response", here.

"Code" tab
In "Code" tab, you may view the code the behavior of the resource, edit and test it. You can for example, use the
our powerful SDK to convert data or anything else.

In "Request" block you can data to the function, like queryValues to the SQL variables.

https://docs.linkapi.solutions/docs/automations/package-private-component#response
https://docs.linkapi.solutions/docs/nodejs-sdk-parser

About API Gateways
Intro
With LinkApi, you can create projects where you can expose entire Automation flows or Components Resources
through HTTPs APIs. To create an API Gateways. access "APIS" > "API Gateways", then clicks on "New API
Gateways" and fill the fields.

API Gateways - Global Settings
Intro
The "Global Settings" tab is responsible to configure your API Gateways. You can configure informations,
authentication, middlewares to each request or response, and others settings. Below, there are more details.

General
Here you can configure informations about the API Gateways, like choice a logo, write a descriptions, configure
the authentication, view the name and Gateway URL

Global flow
Here you can configure global settings to apply in all requests or responses in your API Gateways, like a
middleware to traffic management. For example, you can configure IP Restrictions, Rate Limit, Schema Validator
to all requests. Or configure anything to the responses, like cache to help your API performance.

Observations:

The steps configured follow the direction of the arrow (top to bottom).

Plugin - About
You can use plugins built by Link API in Request and Response flow. There are many plugins to help you. Its
possible use is in Global Flow or in a specific resource .

To use these plugins, you should click on button with 'plus' icon in 'request' or 'response' section.

To use a plugin simply select it and fill the fields. To more details, you can see the plugin documentation.

Plugin - Rate Limit
Intro
Rate limit is used to manage the limit of requests in a time interval in your API Gateway. This plugin is used in
request flow .

Creating a Rate Limit
To create a Rate Limit, select the Rate Limit card and fill the fields to create the plugin.

More details about the fields bellow:

Name: The plugin name
Requests Limit: The limit of API's requests.
Interval: The time interval in which requests can be sent.
Tags: Define by tags which groups will be affected by the rate limit.

Example: If you filled '5' in 'Requests Limit' and filled '10' in 'Interval', then we can send at most 5 requests to the
API in an interval of 10 seconds. When we reach this request limit, we should wait for the interval time to finish to
get it again.

Plugin - Schema Validator
Intro
Schema Validator is used to validate data sent by request or in a response.

For example, you created a API's resource to create an user in your database and the fields 'name' and 'email' are
required. Then you can use a schema validator to validate if the requests has 'name' and 'email' in body
request.

Creating a Schema Validator
To create a Schema Validator plugin, select the Schema Validator card and fill the fields to create the plugin.

More details about the fields bellow:

Name:

The plugin name

Parameter Context:

The context of the data you want to validate. If the data are in Querystring , body or headers .

Properties Context:

The properties that you want validate. For example, check if in body request has the field 'email'. To insert many
properties, you should insert each properties separated by comma, like we usually creating an array.

Plugin - IP Restriction
Intro
IP Restriction is used to restrict your API Gateways to specific IPs.

Creating an IP Restriction
To create a IP Restriction plugin, select its card and fill the fields to create the plugin.

More details about the fields bellow:

Name:

The plugin name

IPS:

The IPs with access to your API. Only machines with IP filled in this field will be able to send requests.

You should insert each IP separated by comma, like we usually creating an array.

Plugin - Cache
Intro
Cache is used to save a response in cache and if the resource receives others requests into time interval
configured, then the resource returns a response from cache.

Creating a Cache
To create a Cache plugin select the Cache card and fill the fields to create the plugin.

More details about the fields bellow:

Name:

The plugin name.

Duration:

The life cycle duration of the cache in seconds.

Monetization - API Gateways
Intro
The monetization plugin is used to monetize your API for each request. Example, you can define a request price
to a specific endpoint and client, then you can handle the monetization by your clients. This plugin is used in
response flow .

Creating a Monetization
To create a Monetization, click on the 'use' button and fill the fields to create the plugin.

Bellow, there are more details about the fields:

Name:

The plugin name.

Value per request:

The price for each request.

Tags:

Your tags can help you.

Details about your monetizations
To access the details about your api monetizations, you should access 'APIs > Monetization' in menu.

API Gateways - Resources
How to create a resource
You should click on green button with 'plus' icon and fill all fields.

The fields are http request types (GET , POST , PUT , DELETE and PATCH) and URI name.

When you click on a specific resource, you can configure the resource. Below there are details about all
configurations you can do.

"General" tab
Here you can define the title and description of the resource.

"Request" tab
Here you can configure the pattern of the possible fields to send a request. This functionality helps you to
document and view all fields.

"Response" tab
Here you can register all possible response pattern. To create a new response, you should click in green button
with "plus" icon and fill the fields, like http status, response name and a color. The formart to create the response
is JSON and you can click on green button to convert fields.

"Flow" tab
Here you should define resource flow.

Request

In Request, you can define rules to requests in this resource, like rate limit or validator .

Runtime

In Runtime, you can define steps to functioning of this resource, like a controller . In each one step you can
include a JavaScript Code or a Component .

Response

In Response, you can define steps to resource response, like a cache to improve the resource performance.

There is a flag called Apply global flow, if it's activated, then all steps/rules defined in Global Settings is activated
to this resource.

"Test" tab
Here you can test your resource sending data, like queryString , body and headers . And expecting a response.

You can test clicking on button Test in top-right from code blocks.

https://docs.linkapi.solutions/docs/automations/apigateway-globalsettings

API Gateways - Documentation
LinkApi will generate your API documentation automatically. In the action bar, select Save and then Deploy . In
a few moments, your documentation will be published and can be accessed by anyone.

The link will be available in the action bar, next the buttons save and deploy . Each project will have a separate
documentation. When a project is edited and published, the API Documentation will be updated in a few
moments.

Developer Portal - About
Intro
With LinkApi, you can create developer portals, where you can group your gateways and set who can manage
them. To create a developer portal, access "APIs" > "Developer Portals", then click on "New developer portal" and
fill the fields.

Developer Portal - Settings
Intro
The "Settings" tab is responsible to configure your Developer Portals. You can configure the portal's basic
information and select the APIs to be exposed in your developer portal.

Developer Portal - Permissions
Intro
The "Permission" tab is where you will select who has permission to access your developer portal. You can
approve or reject users waiting for approval or revoke access for users already approved.

Waiting for Approval
Here you can manage users who requested access to your developer portal. You can approve their request, which
will allow them access into the portal, or you can reject their request, which will delist it.

Approved Users
This is where you can check the list of users that have access to your developer portal. If you need, you can
revoke access by clicking on the red button.

Developer Portal - Login
Intro
When you first access your developer portal page, you will enter the login screen. Here you can access the system
using your credentials, ask for permission or request a new password if you forgot yours.

Request access
Requesting access to a portal is fairly easy, you need to click "Request Access" in the login screen, fill the form
with your information and you can submit your request.

Request a password reset
If you forgot your password, you can click "" fill the field with your e-mail and you will receive an e-mail with a
link where you can change your password to a new one.

Developer Portal - Documentation
Intro
Here you can check the documentation of the selected API. At the top, you'll see basic informations about it like
it's name, description, base URL and the authentication.

Authentication
In this section you can set the authentication method for your API. This will afect every request you send through
this page.

Endpoint
Here you can check the information of a specific endpoint. You can see the HTTP method, description, response
example, the querystring, the response model and you can even test your endpoint with the "Test" button.

API Gateways - Granting API
Access
If you define your API Gateways with authentications, then you should grant API access. To grant access, you
should create a client to the projects.

To more details, click here.

https://docs.linkapi.solutions/docs/management/management-client

API Gateways - Api Key
Authentication
This authentication can be configured in the settings screen which can be accessed through the kog icon in the
left menu. An API key is a token that a client provides when making API calls. The key can be sent in the query
string:

Note: It is important to ensure that there is no access with the same key value

GET /something?api_key=abcdef12345

API Gateways - OAuth2
Authentication
OAuth2 is an authorization standard that gives an API client limited data access. Our OAuth2 implementation
relies on credentials to generate new temporary access.

To generate an access token, send a POST request to the endpoint /token of your API Gateway, with a JSON as
body with the following content:

If the credentials are correct, an answer containing the access_token should be returned, as follows:

The access token expires after an hour that has been generated.

To use other enpoints, use the access_token generated as a header, in the following format:

Keep in mind that the /token endpoint only accepts the credentials in the format described above, other
authentication flows where the credentials are sent in different ways are not supported yet.

// POST https://<your api gateway URL>.gateway.linkapi.solutions/v1/token
{
 "clientId": "id",
 "clientSecret": "secret"
}

// Successful auth response
{
 "expires_in": 3600,
 "data": "token",
 "access_token": "token"
}

// HTTP request header
{
 "Authorization": "Bearer <access_token>"
}

API Gateways - Basic
Authentication
Basic Authentication is the most common authentication system for the HTTP protocol. It is included in the HTTP
request header like this:

Note: The use of Base 64 is due to the MIME standard.

Authorization: Basic {base 64 credentials in the format user:password}

API Gateways - None
Authentication
This configuration is not recommended as the API is exposed to anyone. To use any feature of the API there is no
need to authenticate.To consume the API just call the desired route as in the example below:

Note: When using this configuration, it will not be possible to work with the context of the tenants.

GET /something

Management - Client

Intro
To granting API Gateways' access, you must create a client. Access the follow: "Management" > "Clients". Next
clicks on "New client" and fill the fields.

Authentication
After created your client, you can add your APIs into the client. To add an API, you should click on 'edit'. In tab
'Authentication', then clicks on the button 'Add access', search your api and click on 'create' button. After that,
you can copy your credentials.

Credentials
You can also create new credentials for your Components based on the client. To do that, you must access the
"Credentials" tab and click on the "New Credentials".

This will open a new window where you can select a component and create a new credential for it. To do that,
select a component and then fill the fields that show up.

Management - Tenant
Intro
Tenant is like a group or environment that running specifics triggers . You can use it to your custom,
department, store or anything group. For example: You have a marketing platform with many customers. You
customers can use 'triggers' that your builded to help them, like a 'trigger' to get all new sales from CRM to will
send to a ERP or anything else. Then you can use 'tenants' to separeted per customers, creating a tenant named
with customer name for example(Customer X, Customer Y).

Creating a Tenant
To create a Tenant. access "Management" > "Tenants", then clicks on "New Tenant" and fill the fields. When you
will create it, you can attach in a 'trigger'.

Management - Overview
Intro
You can create a credentials to a specific component. When you don't passing a credentials by high code, then
will use the credentials created.

To more more details about component credentials, read here.

Creating a credential
To create a component's credentials. access "Management" > "Credentials", then clicks on "New credential" and
fill the fields.

https://docs.linkapi.solutions/docs/api-gateway/apigateway-about

Management - OAuth2
Credentials
Intro
If you need to create a credential using OAuth2, you can select an component with the "OAuth2" authorization
type and you'll need to fill the fields.

Obtaining the Access Token
After filling the fields, you can click on Save and you will be redirected to your selected Auth URL, where you'll
need to grant access to your credential. After that, your access token will be generated automatically based on
the Access token URL provided.

Using Custom Names
If your integration uses a different name on any of the fields, you can customize it on the authentication options
of your component.

When you use a custom name, not only it will change the display of that field on the credentials screen, but it will
also change the generated URL when used on fields such as "client_id" or "client_secret". In the example below,
those fields will be treated as "customer_key" and "customer_secret"

Using Default Values
If you need to use constant values on your component's credentials, you can set your fields as default, which will
allow you to set up a default value on those fields on the "Default Values" tab.

That field will be set with that default value when you create any credential based on that component.

Management - Dictionary
Intro
Dictionary is a LinkApi feature to store data in key/value pairs for multiple purposes. These keys are stored inside
groups that are saved by tenant on your account. You can save and get values on both Low code and High code
automations. The Dictionary page's purpose is to visually manage the groups of keys you have stored.

Read more details about using dictionary on automations:

Low code
High code

Creating and editing a dictionary group
To create a new group you can simply click on the "New dictionary" button on the top right corner and fill the
creation modal with a group name, tenant and one or more key/value pairs. See the example below:

You can also edit the group name if necessary, click the "Edit group name" button on the group row to do so:

To delete a group click the "Delete group" button on the group row:

Important: Deleting a group will also delete all its keys and it wont be possible to restore it after.

Visualizing and managing group keys
By clicking on the "View keys" button of any group you will be taken to a page where you can search, add, edit
and delete keys inside that group. See the example:

https://docs.linkapi.solutions/docs/automations/automation-lowcode-dictionary
https://docs.linkapi.solutions/docs/nodejs-sdk/nodejs-sdk-dictionary

Use the button "New key" to create new key/value pairs inside the selected group, a modal just like tre group
creation one will be shown. To edit an existing key, click the "edit" button on the key row, you can only edit its
value:

To delete a key you simply click the "delete" button on the selected key. Just like deleting entire groups, keys also
cannot be recovered after deletion.

Management - Users
Intro
You can create new users to so they can access Link API's Platform.

Creating an user
To create an user, you should access the follow: "Management" > "Users". Next clicks on "New User" and fill the
fields.

If you want to remove the user's access, you must click in 'lock' icon.

SDK - Parser
Used to convert data such as XML to JSON. or JSON to CSV.

JSON

JSON to XML

To convert JSON to XML use the following example:

JSON to CSV

To convert JSON to CSV use the following example:

XML

XML to JSON

To convert XML to JSON use the following example:

const { json } = require('@linkapi.solutions/nodejs-sdk/parser');

const jsonToParse = {
 name: 'John'
};

const xml = await json.toXML(jsonToParse);

const { json } = require('@linkapi.solutions/nodejs-sdk/parser');

const jsonToParse = {
 name: 'John'
};

const csv = await json.toCSV(jsonToParse);

const { xml } = require('@linkapi.solutions/nodejs-sdk/parser');

const xmlToParse = `
<note>

CSV

CSV to JSON

To convert XML to JSON use the following example:

<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>
`;

const jsonParsed = await xml.toJSON(xmlToParse);

const { csv } = require('@linkapi.solutions/nodejs-sdk/parser');

const csvToParse = `
a,b,c
1,2,3
4,5,6
`;

const jsonParsed = await csv.toJSON(csvToParse);

SDK - Logger
Used to create logs on the platform and provide visibility of what is happening within the flows.

Log
Method used to create logs, to create a log follow the example below:

You can view logs from your automations on Integrations > Logs:

const logger = require('@linkapi.solutions/nodejs-sdk/logger');

logger.log({
 data: {},
 name: 'Log',
 uniqueKey: '-',
 tags: [],
 status: 'SUCCESS',
 finalLog: false
});

SDK - Component
Used to consume Components and other entities.

Request

To consume a Component Resource use the following example:

const Component = require('@linkapi.solutions/nodejs-sdk/component');

const defaultOptions = {
 headers: {},
 queryString: {}
};
const myComponent = new Component('myComponent', defaultOptions);

const resourceMethod = 'GET'; // 'POST' | 'PUT' | 'DELETE' | 'PATCH'
const resourceName = 'products/{id}';

const result = await myComponent.request(resourceMethod, resourceName, {
 body: {},
 headers: {},
 queryString: {},
 urlParams: {
 id: '1'
 }
})

SDK - Dictionary
Store and retrieve values in the key/value format for various purposes. Values are stored in groups according to
the tenant in the context.

Get
Retrieve stored values using a unique identifier and a group name, use the following example:

Set
Store or update values belonging to tenants using a unique identifier and a group name, use the following
example:

const dictionary = require('@linkapi.solutions/nodejs-sdk/dictionary');

const keyName = 'example';
const groupName = 'example-group';
const value = await dictionary.get(keyName, groupName);

const dictionary = require('@linkapi.solutions/nodejs-sdk/dictionary');

const dataToStore = {
 name: 'John'
};

const options = {
 allowUpdateKey: false // when enabled update a value if key already exists
}

const keyName = 'userName';
const groupName = 'example-group';

await dictionary.set(keyName, dataToStore, groupName, options);

SDK - MongoDB
Used to perform operations on the MongoDB database management system

find

Selects documents in collection by a condition

findOne

Returns one document that satisfies the specified query criteria on the collection

insertOne

const MongoDBService = require('@linkapi.solutions/nodejs-sdk/mongodb');

const findQuery = {};
const findOptions = {
 skip: 0,
 limit: 20,
 sort: { codigo: -1 },
 projection: { email: 1, codigo: 1 }
};
const collectionName = 'customers';
const connectionOptions = {
 uri: 'mongodb://localhost:27017/databaseName',
 // dbName: 'databaseName' // If you choose not to pass the database name in the connection string you can pass this
parameter
};

const collection = new MongoDBService(collectionName, connectionOptions);
const result = await collection.find(findQuery, findOptions);

const MongoDBService = require('@linkapi.solutions/nodejs-sdk/mongodb');

const findOneQuery = { email: 'product@domain' };
const findOneOptions = {
 projection: { email: 1, codigo: 1 }
};
const collectionName = 'customers';
const connectionOptions = {
 uri: 'mongodb://localhost:27017/databaseName',
 // dbName: 'databaseName' // If you choose not to pass the database name in the connection string you can pass this
parameter
};

const collection = new MongoDBService(collectionName, connectionOptions);
const result = await collection.findOne(findOneQuery, findOneOptions);

Inserts a document into a collection.

insertMany

Inserts multiple documents into a collection.

updateOne

Updates a single document within the collection based on the query.

const MongoDBService = require('@linkapi.solutions/nodejs-sdk/mongodb');
const document = {
 codigo: 7,
 email: 'name@domain.com',
 name: 'Name'
};

const collectionName = 'customers';
const connectionOptions = {
 uri: 'mongodb://localhost:27017/databaseName',
 // dbName: 'databaseName' // If you choose not to pass the database name in the connection string you can pass this
parameter
};

const collection = new MongoDBService(collectionName, connectionOptions);
const result = await collection.insertOne(document);

const MongoDBService = require('@linkapi.solutions/nodejs-sdk/mongodb');
const documents = [
 {
 codigo: 1,
 email: 'customer@domain.com',
 name: 'Customer'
 },
 {
 codigo: 2,
 email: 'customer2@domain.com',
 name: 'Customer 2'
 }
];

const collectionName = 'customers';
const connectionOptions = {
 uri: 'mongodb://localhost:27017/databaseName',
 // dbName: 'databaseName' // If you choose not to pass the database name in the connection string you can pass this
parameter
};

const collection = new MongoDBService(collectionName, connectionOptions);
const result = await collection.insertMany(documents);

const MongoDBService = require('@linkapi.solutions/nodejs-sdk/mongodb');

const updateOneQuery = { email: 'myname@domain.com' };

updateMany

Updates all documents that match the specified query for a collection.

deleteOne

Removes a single document from a collection.

const updateOneAction = { $set: { customDomain: true, name: 'MyName' } }; // In this parameter you can inform any action
parameter of the mongodb update operation
const updateOneOptions = {
 // upsert: <boolean>,
 // writeConcern: <document>,
 // collation: <document>,
 // arrayFilters: [<filterdocument1>, ...],
 // hint: <document|string> // Available starting in MongoDB 4.2.1
};

const collectionName = 'customers';
const connectionOptions = {
 uri: 'mongodb://localhost:27017/databaseName',
 // dbName: 'databaseName' // If you choose not to pass the database name in the connection string you can pass this
parameter
};

const collection = new MongoDBService(collectionName, connectionOptions);
const result = await collection.updateOne(updateOneQuery, updateOneAction, updateOneOptions);

const MongoDBService = require('@linkapi.solutions/nodejs-sdk/mongodb');

const updateManyQuery = { email: /.*@domain.*/ };
const updateManyAction = { $set: { customDomain: true } }; // In this parameter you can inform any action parameter of
the mongodb update operation
const updateManyOptions = {
 // upsert: <boolean>,
 // writeConcern: <document>,
 // collation: <document>,
 // arrayFilters: [<filterdocument1>, ...],
 // hint: <document|string> // Available starting in MongoDB 4.2.1
};

const collectionName = 'customers';
const connectionOptions = {
 uri: 'mongodb://localhost:27017/databaseName',
 // dbName: 'databaseName' // If you choose not to pass the database name in the connection string you can pass this
parameter
};

const collection = new MongoDBService(collectionName, connectionOptions);
const result = await collection.updateMany(updateManyQuery, updateManyAction, updateManyOptions);

const MongoDBService = require('@linkapi.solutions/nodejs-sdk/mongodb');

const deleteOneQuery = { email: 'customer@domain.com' };
const collectionName = 'customers';

deleteMany

Removes all documents that match the query from a collection.

aggregate

Calculates aggregate values for the data in a collection

const connectionOptions = {
 uri: 'mongodb://localhost:27017/databaseName',
 // dbName: 'databaseName' // If you choose not to pass the database name in the connection string you can pass this
parameter
};

const collection = new MongoDBService(collectionName, connectionOptions);
const result = await collection.deleteOne(deleteOneQuery);

const MongoDBService = require('@linkapi.solutions/nodejs-sdk/mongodb');

const deleteManyQuery = { customDomain: true };
const collectionName = 'customers';
const connectionOptions = {
 uri: 'mongodb://localhost:27017/databaseName',
 // dbName: 'databaseName' // If you choose not to pass the database name in the connection string you can pass this
parameter
};

const collection = new MongoDBService(collectionName, connectionOptions);
const result = await collection.deleteMany(deleteManyQuery);

const MongoDBService = require('@linkapi.solutions/nodejs-sdk/mongodb');
const aggregatePipeline = [
 {
 $match: {
 customDomain: false
 }
 },
 {
 $lookup: {
 from: 'customeraddresses',
 localField: 'codigo',
 foreignField: 'customer',
 as: 'addresses'
 }
 }
];

const collectionName = 'customers';
const connectionOptions = {
 uri: 'mongodb://localhost:27017/databaseName',
 // dbName: 'databaseName' // If you choose not to pass the database name in the connection string you can pass this
parameter
};

const collection = new MongoDBService(collectionName, connectionOptions);
const result = await collection.aggregate(aggregatePipeline);

SDK - MySQL
Used to perform operations on the MySQL database management system

execute

Execute a query

const mysql = require('@linkapi.solutions/nodejs-sdk/mysql');

const params = {
 query: `SELECT * FROM users WHERE id = @userId`,
 queryValues: {
 userId: 82 // This field will replace the query's @userId
 }
};

// For a complete list of options see the npm mysql2 documentation.
const connectionOptions = {
 host: 'localhost',
 user: 'admin',
 password: 'admin',
 database: 'databaseName',
 port: '3306'
};

const response = await mysql.execute(params, connectionOptions);

SDK - SQL Server
Used to perform operations on the SQL Server database management system

execute

Execute a query

const sqlserver = require('@linkapi.solutions/sqlserver');

const params = {
 query: `SELECT * FROM users WHERE id = @userId`,
 queryValues: {
 userId: 3 // This field will replace the query's @userId
 },
 credentials: {
 database: "mydb",
 port: "1433",
 password: "pass",
 username: "user",
 host: "host",
 options: { // For a complete list of options see the npm mssql documentation.
 enableArithAbort: true,
 encrypt: true
 }
 }
};

const response = await sqlServer.execute(params);

SDK - Oracle DB
Used to perform operations on the Oracle DB database management system

execute

Execute an Oracle DB query

const oracledb = require('@linkapi.solutions/nodejs-sdk/oracledb');

const queryParams = {
 query: 'SELECT * FROM MYTABLE WHERE condition = @condition',
 queryValues: {
 condition: true // This field will replace the query's @condition
 }
};

// For a complete list of options see the npm oracledb documentation.
const queryOptions = {
 // autoCommit: true,
 // batchErrors: true, // continue processing even if there are data errors
 // extendedMetaData: true, // get extra metadata
 // prefetchRows: 100, // internal buffer allocation size for tuning
 // fetchArraySize: 100 // internal buffer allocation size for tuning
};

const connectionOptions = {
 user: 'oracleUser',
 password: 'oraclePassword',
 connectionString: 'oracleConnectionString'
};

const result = await oracledb.execute(queryParams, connectionOptions, queryOptions);

SDK - Redshift
Used to perform operations on the Redshift database management system

execute

Execute a query

const redshift = require('@linkapi.solutions/nodejs-sdk/redshift');

const params = {
 query: `SELECT * FROM users WHERE id = @userId`,
 queryValues: {
 userId: 3 // This field will replace the query's @userId
 }
};
// For a complete list of options see the npm `node-redshift` documentation.
const connectionOptions = {
 host: 'localhost',
 user: 'userName',
 password: 'pwd',
 port: 5439,
 database: 'databaseName'
};

const response = await redshift.execute(params, connectionOptions);

SDK - PostgreSQL
Used to perform operations on the PostgreSQL database management system

execute

Execute a query

const postgresql = require('@linkapi.solutions/nodejs-sdk/postgresql');

const params = {
 query: `SELECT * FROM users WHERE id = @userId`,
 queryValues: {
 userId: 3 // This field will replace the query's @userId
 }
};

const queryOptions = {
 rawResult: true // optional, returns full query result when true - default: false
};

// For a complete list of options see the npm `node-redshift` documentation.
const connectionOptions = {
 host: 'localhost',
 user: 'userName',
 password: 'pwd',
 port: 5439,
 database: 'databaseName'
};

const response = await postgresql.execute(params, connectionOptions, queryOptions);

SDK - SOAP
Used to perform SOAP requests

Request

To consume a SOAP webservice use the following example:

As seen above the XML Envelope content is sent in the "body" object. If you prefer, it's possible to send de XML
Envelope as a string in the body using the property "$xml":

The image below shows how it was done to get the group and servicePath parameters used in the code above.

const soap = require('@linkapi.solutions/nodejs-sdk/soap');

const connectionParams = {
 wsdl: 'https://apps.correios.com.br/SigepMasterJPA/AtendeClienteService/AtendeCliente?wsdl',
 // username: 'username', If the webservice has Basic auth authentication you must enter this field
 // password: 'password' If the webservice has Basic auth authentication you must enter this field
};

const connectionOptions = {
 // disableCache: boolean, don't cache WSDL files, request them every time.
 // endpoint: string, override the SOAP service's host specified in the .wsdl file.
 // envelopeKey: string, set specific key instead of<pre>< soap: Body></soap: Body ></pre >.
 // overridePromiseSuffix: string, if your wsdl operations contains names with Async suffix, you will need to override
the default promise suffix to a custom one, default: Async.
};

const client = await soap.connect(connectionParams, connectionOptions);
// If the webservice has Basic auth authentication you must connect at your client using the method below
// const client = soap.connectBasic(connectionParams, connectionOptions);

const group = 'AtendeClienteService';
const servicePath = 'AtendeClientePort.consultaCEP';
const body = {
 cep: '00000000'
};

const result = await soap.request(client, group, servicePath, body);

const body = {
 $xml: '<cep>00000000</cep>'
}

Note that the consultaCEP service is within the AtendeClientePort topic, so the servicePath is
'AtendeClientePort.consultaCEP'

SDK - Request
Through this library it is possible to make HTTP and HTTPS calls. The library is an abstraction of the axios module,
all parameters passed are compatible with the module. If you need any information that was not found here, visit:
https://github.com/axios/axios

Simple HTTP call
const request = require('@linkapi.solutions/nodejs-sdk/request');

const options = {
 method: 'GET', // 'POST' | 'PUT' | 'PATCH | 'DELETE'
 url: 'https://api.com',
 queryString: {
 page: 2
 },
 headers: {
 key: 'value'
 },
 body: {
 some: 'data'
 },
 generateException: false, // optional - generate an exception if the response status code is not between 200-299 -
default true
 timeout: 1000, // optional - timeout in ms
 rejectUnauthorized: false // optional - returns an error if certificate validation fails - default true
 fetchWithFullResponse: false // optional - returns only the response body - default true,
};

const response = await request(options);

// output
// {
// "request": {
// "queryString": {},
// "body": {},
// "url": "",
// "method": "get",
// "params": {},
// "data": "{}",
// "headers": { }
// },
// "response": {
// "body": {
// },
// "statusCode": 200,
// "headers": { }
// }
// }

https://github.com/axios/axios

SDK - Parallel
Run functions in parallel from an array of data and configure transformation to handle the array more easily.

Parallel

To run functions in parallel from an array use the following example:

const parallelExec = require('@linkapi.solutions/nodejs-sdk/parallel');

const array = []; // required

async function callback(item, uniqueKey) { // required
 try {
 // do stuff
 } catch(err) {
 // handle err
 }
}

const options = { // optional
 parallelExecutions: 2, // number of parallel executions, default: 2, max: 100
 uniqueKeyPath: 'id', // unique key path for each element of the array
 filterDuplicates: true, // filter duplicate elements from the array through the unique key, default: false
 interval: 1000 // interval between parallel executions in milliseconds, default: 200
};

await parallelExec(array, callback, options);

SDK - FTP
FTP
Used to communicate with FTP (File Transfer Protocol)

####Code structure

The code structure will always follow the same pattern, and you should only change the method line according to
what you want to do.

###Methods ####Read File Retrieves a file at path from the server.

Method: readFile(filePath)

####Write File Insert data into a server file.

Method: writeFile(filePath, fileData)

const FTP = require('@linkapi.solutions/nodejs-sdk/ftp');

module.exports = async ctx => {
 try {
 // For a complete list of options see the npm ftp documentation.
 const connectionOptions = {
 host: 'localhost', // The hostname or IP address of the FTP server
 user: 'user', // Username for authentication
 password: 'password', // Password for authentication
 port: 21 // The port of the FTP server
 };

 const ftp = new FTP(connectionOptions);
 const result = await ftp.readFile(filePath); // Method line

 return result;
 } catch (err) {
 throw err;
 }
};

// Change on the method line
const result = await ftp.readFile(filePath);

// Change on the method line
const result = await ftp.writeFile(filePath, fileData);

####Delete File Deletes a file from the server

Method: deleteFile(filePath)

####Copy File Copies a file from one folder to another

Method: copyFile(fromPath, toPath)

####Read Directory Retrieves the directory listing of path.

Method: readDirectory(directory)

// Change on the method line
const result = await ftp.deleteFile(filePath);

// Change on the method line
const result = await ftp.copyFile(fromPath, toPath);

// Change on the method line
const result = await ftp.readDirectory(directoryPath);

SDK - Third Party Libs
Packages available to use when developing your project automations.

lodash
Lodash is a lib that includes many methods that make data handling easier and faster.

Some example methods:

filter

get

.get is a useful method in cases where property doesn't exists, it will not throw an error and runtime isn't stopped

random

const _ = require('lodash') // underscore (_) is a common import name for lodash, to enable easy use, like jQuery ($)

var users = [
 { 'user': 'Kapi', 'age': 36, 'active': true },
 { 'user': 'John', 'age': 40, 'active': false }
];

_.filter(users, obj => { return o.active; }); // Return all users where the property "active" is truthy
// => { 'user': 'Kapi', 'age': 36, 'active': true }

const _ = require('lodash')

var object = { 'a': [{ 'b': { 'c': 3 } }] };

_.get(object, 'a[0].b.c');
// => 3

_.get(object, ['a', '0', 'b', 'c']); // Same as object.a[0].b.c
// => 3

_.get(object, 'a.b.c', 'default'); // If path to desired property is invalid, fallback value "default" is return
// => 'default'

const _ = require('loadash')

const randomNumber = _.random(0, 999999) // Returns a random number between 0 and 999999

https://lodash.com/docs/4.17.15
https://lodash.com/docs/4.17.15#filter
https://lodash.com/docs/4.17.15#get
https://lodash.com/docs/4.17.15#random

For more methods, check out lodash's official documentation

axios
A simple lib that allows easy HTTP Requests

Example

For more details and params, check axios' official documentation

decimal.js
An arbitrary-precision Decimal type for JavaScript.

Examples

For more details on methods and how decimal.js can help, check their official documentation

const axios = require('axios');

axios.get('https://linkapi.solutions')
 .then(response => {
 return response.data
 })
 .catch(error => {
 // Do something with your failure :)
 return error
 })

// Or with async/await
async function makeRequest () {
 try {
 const request = await axios.get('https://linkapi.solutions')
 return request.dat
 } catch (error) {
 // Another error?
 return error
 }
}

const Decimal = require('decimal.js')

let x = new Decimal(123.4567)
let y = new Decimal('123456.7e-3')
console.log(x === y) // true

let a = new Decimal('0xff.f') // '255.9375'
let b = new Decimal('0b10101100') // '172'

https://lodash.com/docs/4.17.15
https://github.com/axios/axios
https://github.com/axios/axios
https://mikemcl.github.io/decimal.js/
https://mikemcl.github.io/decimal.js/

IMPORTANT
Please note that other libs not included on this list are not available for use in LinkApi projects, if your use case
needs a different library, please open a support ticket telling us that

https://platform.linkapi.solutions/tickets

CLI - Getting Started
About our CLI
With our CLI you can create your own catalog of components like components, functions and data-
transformations. You can also consume the global components provided by LinkApi.

Our CLI (Command Line Interface) offers you a series of tools dedicated to developing and managing your
projects on LinkApi.

Setup
Before installing LinkApi CLI, you’ll need to install Node.js(8.12.0+). Having it installed, you can use NPM, which is
Node package manager, to install our CLI executing the following command:

Now you have a linkapi global command, which can be executed on any terminal window. After installing the CLI,
you’ll need to login on your Google account, using:

This command allows your local machine to connect to your LinkApi account, as well as access to your projects. In
order to test if the automation worked, you can execute linkapi project list to see your whole project list. It needs
to have the same projects that you can see on you LinkApi’s portal.

How to get the latest version?
To check if your CLI is updated, you have to execute the installation command once again:

npm i -g @linkapi.solutions/cli

lkp login

npm i -g @linkapi.solutions/cli

CLI - Projects
Create a project
To create a project via CLI, you should use the following command:

Shortcut version:

After executing the command, answer the questions on the form and at the end the project will be automatically
cloned.

Clone a project
The first thing you need is a created project (via CLI or Portal). Now, to clone a project via CLI, you should use the
following command:

Shortcut version:

After executing the command, a list of available projects will be displayed, just select the desired project and
press enter. After selecting the project, select the Clone option. It is only possible to clone automation-type
projects.

Manage dependencies
The first thing you need is a created project (via CLI or Portal). Now, to manage a project dependencies via CLI,
you should use the following command:

lkp project create

lkp p create

lkp project list

lkp p l

Shortcut version:

After executing the command, a list of available projects will be displayed, just select the desired project and
press enter. After selecting the project, select the Manage Dependencies option. A list will be displayed with the
available components, just select the desired ones by pressing SPACE and press ENTER after selecting all the
desired components.

Then a list of functions will be displayed and the selection procedure is the same as that of components.

Delete a project
The first thing you need is a created project (via CLI or Portal). Now, to delete a project via CLI, you should use the
following command:

Shortcut version:

After executing the command, a list of available projects will be displayed, just select the desired project and
press enter. After selecting the project, select the Delete option and confirm.

Generate template files
To generate a file from automation, function or data-transformation template, you should execute the following
command:

lkp project list

lkp p l

lkp project list

lkp p l

lkp generate <type> <name>

Shortcut version:

Valid values: automation, function or data-transformation

After executing this command, the file will be created from a template according to the declared type. Example:

Save changes
To save the changes you made into a project, you can use the following command:

After executing this command, all of the changes will be saved on the platform. Notice: When committing a
project, the message is optional.

Discard changes
To discard all of the changes made on a project at once, you can execute this command:

Shortcut version:

Publish changes
To publish a project via CLI, use this command:

lkp g <type> <name>

lkp project generate automation test

lkp project commit "[message]"

lkp project discard

lkp p d

lkp project publish

Shortcut version:

Sync Files
To sync changes of a project using CLI, use the following command:

After executing this command, your project will be synced and all of the changes will be merged in its directory

Declare Project as Webhook

After executing this command, you can create a Webhook trigger.

lkp p p

lkp project sync

lkp project set --isWebHook true

CLI - Triggers
Create a trigger
To create a trigger via CLI, you should use the following command:

Shortcut version:

After executing the command, answer the questions on the form and at the end the trigger will be created

Start a trigger
To start a trigger via CLI, you should use the following command:

Shortcut version:

After executing the command, a list of available triggers will be displayed, just select the desired trigger and press
enter. After selecting the trigger, select the Run option.

Delete a trigger
The first thing you need is a created trigger (via CLI or Portal). Now, to delete a trigger via CLI, you should use the
following command:

lkp trigger create

lkp t c

lkp trigger list

lkp t l

lkp trigger list

Shortcut version:

After executing the command, a list of available triggers will be displayed, just select the desired trigger and press
enter. After selecting the trigger, select the Delete option and confirm

lkp t l

IP whitelists
Traffic from LinkApi

IP whitelisting allows you to ensure traffic to/from LinkApi.

35.174.51.251
52.21.113.85
54.209.233.223

You can add these IP addresses to your application/firewall whitelist. Add all three IP addresses to the whitelist to
ensure continuous access.

Creating a ticket request inside
LinkApi
Looking for improvements in every step of our experience, we have updated the experience on how to create and
follow up tickets inside our platform in partnership with Atlassian. This article will show the step-by-step on how
to create tickets inside LinkApi.

🚧 ATTENTION
Create tickets to get help only with LinkApi features and pages. If you need help with other APIs,
authentication and connections, we recommend contacting directly the desired company.

First, click on the help menu and go to Tickets. You'll be redirected to company's ticket list page like the one
below:

Here is where you can create tickets. You simply click the button "Open ticket" to open the creation modal. There
you can select a category from Suggestion, Report a problem and Doubts. Choose either one and start describing
your request.

Fill the fields above with the information you need help with. Make sure to be clear and direct in the subject when
describing your problem. You can also upload screenshots to help. Just hit send when you're ready.

After sending your request you will be taken back to the tickets list page and your newest ticket will be there
along with any previous requests. Click on the ticket row to go to see its details and comments.

On the ticket details page you will see all the initial request information and be able to follow along to responses
like seen above. Use this page to reply and send new attachments if necessary. You will also receive email
notifications when one of our agents responds your request.

📘 Viewing older tickets opened through Jira Service Desk
If you previously sent requests to our support team using Jira Service Desk you will still be able to see these
requests on your tickets list. Differently than requests opened through our platform, you will be redirected
to the request's page on Jira when clicking to visualize its details.

👍 We hope you liked our new tickets page!
Have any feedback or suggestions? Why don't you try creating a ticket with your submission? 😉

Support tickets SLA
Each ticket opened in our platform will be responded and handled according to its priority. Our team have
defined SLA rules to identify a request's priority. See the table below to understand how we organize and handle
each request:

